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An axiomatic approach to quantum mechanics is proposed in terms of a "logic" 
scheme satisfying a suitable set of axioms. In this context the notion of pure, 
maximal, and characteristic state as well as the superposition relation and the 
superposition principle for the states are studied. The role the superposition 
relation plays in the reversible and in the irreversible dynamics is investigated 
and its connection with the tensor product is studied. Throughout the paper, the 
W*-algebra model, which satisfies our axioms, is used to exemplify results and 
properties of the general scheme. 

1. I N T R O D U C T I O N  

The so-called logic approach to classical and quantum mechanics has 
its beginning in 1936 with a paper by Birkhoff and von Neumann. In that 
paper the authors study the connection between the set of the experimental 
observations of the physical system E and subsets of the "phase space" of 
E which is assumed to be the set of the pure state of E. 

In the classical case the connection there studied is such that to every 
Lebesgue measurable region of the phase space one can associate the 
experimental proposition (test, y e s - n o  experiment, or simply proposition) 
which establishes whether the position and momentum coordinates of the 
system are in that region or not. 

If one identifies regions whose difference has Lebesgue measure zero, 
one is then led to represent the experimental propositions in terms of a 
distributive orthocomplemented lattice (Boolean algebra) of classes of 
measurable subsets of the phase space of E. 

The tests associated in the above-mentioned way to E ensure a 
complete description of all the observables of the system. Indeed, every 
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classical observable is represented by a measurable function on the phase 
space and hence it can be analyzed in terms of the y e s - n o  experiments 
corresponding to the inverse images of the values it takes on the real line. 

In the quantum case the connection is such that one is led to identify 
the yes -no  experiments on E with the closed subspaces L(H) of the 
hilbert space H of 52. The ye s -no  experiments are indeed observables of 52 
which assign to the presence or absence of a certain property relative to 52 
the value 1 or 0, respectively. 

Hence they can be identified with the orthogonal projections on H or 
equivalently with the closed subspaces of H (yon Neumann, 1955). Also 
here the yes -no  experiments on Y~ give a complete description of the 
observable of E since, owing to the spectral theorem of the self-adjoint 
operators, every observable can be analyzed in terms of a suitable collec- 
tion of projections and hence of tests of 52. 

There is a natural physical interpretation of the inclusion ( < )  of the 
subspaces in L ( H ) :  a, b E L ( H )  and a<b means that the answer yes for 
the tests of a implies the answer yes for the tests of b. Moreover for every 
test a EL(H),  the Hilbertian orthogonal complement a • of a represents 
the test obtained from a by interchanging its outcomes. Given a, b EL(H)  
the subspace aNb (denoted aAb) of H gives the test which answers yes 
when both a and b answer yes, while the closed linear span aVb of a and b 
in H defines a new test through aVb=(a  • Ab•  • 

With the operations < ,  A,  M, A_ the set L(H)  of the y e s -n o  experi- 
ments on E becomes a lattice which is orthomodular, namely, it has a weak 
property of distributivity (a Boolean algebra is an orthomodular lattice, 
but the converse does not hold) (Birkhoff and von Neumann, 1936). 

Birkhoff and von Neumann associate then axiomatically to every 
physical system Y~ the set of the ye s -no  experiments on ~ whose structure 
is assumed to be that of an orthomodular lattice (logic of 52) and whose 
operations are interpreted and motivated as in the previous classical and 
quantum examples. 

From the point of view of the logics the difference between classical 
and quantum systems is given by the "propositional calculus," which 
consists in the classical case by the operations of a Boolean algebra and in 
the quantum case by the more general calculus of the operations of a 
nondistributive orthomodular lattice. 

One of the problems is now of finding under what conditions the 
initially mentioned classical and quantum models can be obtained as 
special cases of the assumed abstract scheme. 

According to standard results in the theory of the distributive lattices, 
a Boolean logic can be represented in terms of subsets of a set (see 
Birkhoff and von Neumann, 1936, and references therein). 
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On the other hand the mathematical problem of representing a non- 
distributive logic has not had a simple history. In their paper Birkhoff and 
von Neumann were able to determine the class of modular irreducible 
logics of finite length >3 as the class of the projective geometries on 
number fields admitting involutorial antiisomorphisms with definite diago- 
nal Hermitian form. 

The problem was successively attacked by Jauch and Piron in their 
axiomatic approach to quantum mechanics (Piron, 1964, 1976; Jauch, 
1968; Jauch and Piron, 1963, 1969). Piron was able to generalize the results 
obtained by Birkhoff and yon Neumann characterizing the logics which 
can be represented in terms of irreducible Hilbertian logics, namely, in 
terms of the closed subspaces of a Hilbert space over the real, complex, or 
quanternionic numbers (Piron, 1964) (see also Section 3 of this paper). 

From a physical point of view Piron's result provides a different and 
direct motivation about the Hilbert space which is associated to the 
physical system in the conventional quantum mechanics. 

We now have to consider also the states of the system since the 
propositions alone are not sufficient to get physical previsions. If one 
wants to know the probability of the outcome yes of a yes-no experiment 
performed on the physical system, one has to specify the preparing 
procedures (states) by which it has been prepared. 

In classical statistical mechanics this is obtained representing the 
states by means of the probability measures on a Boolean logic of the 
phase space of the system (Mackey, 1963; Gudder, 1970). 

The natural extension of this point of view to quantum statistical 
mechanics is that of assuming that the states be represented by o-additive 
measures (with total mass l) from the (nondistributive) logic of the system 
to the interval [0, 1]. 

This works well in the Hilbert model since, by a fundamental theorem 
due to Gleason (Gleason, 1957) the o-additive measures (with total mass l) 
on the Hilbertian logic L(H) (H a separable Hilbert space) can be 
identified with the statistical operators on H. 

Once the classical and the irreducible quantum systems have been 
characterized the problem arises of studying logics and states of more 
general physical systems (there exist indeed quantum physical systems 
which are not irreducible, namely, possessing superselection rules). 

In doing a physical theory, one typically associates to the physical 
system the propositions [or even the observables or the effects (Ludwig, 
1974)], the states and a function which gives the probability of the outcome 
yes for a proposition (or the probability distribution for an observable or 
for an effect) when the system is in a given state together with a suitable 
set of axioms which must be satisfied by the theory. Examples of such 
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physical theories are, beside the ordinary quantum mechanics, the scheme 
proposed by Mackey (1963), Jauch (1968), Varadarajan (1968), Piton 
(1976), and Ludwig (1974) (a review of mathematical structures of quan- 
tum mechanics is the content of Beltrametti and Cassinelli, 1976). 

Among the different physical theories the so-called logic approach to 
quantum mechanics consists of those theories in which the propositions are 
assumed as the fundamental observables (even if not necessarily the 
primitive entities). A widely studied problem in the context of the logic 
approach to quantum mechanics is the one connected with the superposi- 
tion principle. It is well known that this is a point where some distinguish- 
ing properties between classical and quantum physical systems can be 
made very transparent. Dirac (1947) based his formulation of quantum 
mechanics directly on this principle. By means of it, it is possible to obtain 
new pure states by linearly combining and normalizing to 1 representative 
vectors of rays (pure states) of the Hilbert space of the physical system. 

The language of lattice theory is particularly convenient for a 
mathematically precise formulation of the superposition of the states and 
of the quantum (or classical) superposition principle. 

A formulation in terms of atomic propositions has been given by 
Jauch (1968), which shows that the quantum superposition principle is in 
fact a consequence or the non-Boolean structure of the logic of the 
physical system. 

It has also been shown that if a superposition principle holds, then the 
logic is a complete atomic lattice (Gudder, 1970) and that, if the latter is 
Boolean, the only nontrivial superpositions of the states are the statistical 
mixtures of state (Gudder, 1970; Varadarajan, 1968). The formulation of 
the superposition principle given by Jauch implies the irreducibility of the 
logic, namely, the absence of superselection rules for the physical system. 
Such a result has been obtained also by using Varadarajan's superposition 
of states together with a quantum superposition principle for pure states 
(Varadarajan, 1968; Pulmannov~t, 1976). However, an atomic non-Boolean 
logic, even if reducible, admits of quantum superpositions of states (Berzi 
and Zecca, 1974). 

The superposition principle has also been formulated as a modifica- 
tion of the formula which gives the statistical mixture for pure states 
(Delyannis, 1976) and, in the context of the algebraic quantum theory, in a 
way similar to the one proposed by Jauch (Chen, 1973). There exists also a 
formulation in terms of transition probabilities in the context of Mackey's 
scheme (Cantoni, 1975, 1976). 

Another problem, even if less studied, of the logic approach to 
quantum mechanics is that of providing a dynamical picture for the 
physical system directly in the language of its abstract formulation. There 
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exist indeed definitions of the reversible dynamical evolution of the system 
in terms of one parameter group of convex automorphisms of the set of 
states (Schr6dinger-type dynamics) (Mackey, 1963; Varadarajan, 1968) or 
in terms of orthoisomorphisms of the logic (Heisenberg-type dynamics) 
(Jauch, 1968; Piron, 1976). However, the results are generally obtained 
once the scheme has been specialized to the Hilbertian model. 

The same can be said for the formulation of the irreversible time 
evolution of the physical system (Piron, 1976). 

As far as the author knows, the only study of a reversible dynamics 
developed at the level of an abstract proposition-state structure is the 
one proposed by Gorini and Zecca (1975). The invariance under time 
translation of the superposition relation for the states is there employed to 
have physically equivalent Schr6dinger and Heisenberg pictures. 

Other problems connected with the logic approach to quantum me- 
chanics will be mentioned in Section 4. 

The object of this paper is to provide a logic scheme in which the 
problems mentioned can be studied possibly as a basis for further develop- 
ments. 

We associate to the physical system Y. the propositions and the states 
of Y together with a set of physical and mathematical assumptions (such a 
theory will be called proposition-state structure). The mutual conceptual 
dependence of states and propositions is made evident by a suitable set of 
axioms, without assuming the propositions to be fundamental entities. In 
this sense we follow the point of view by Pool (1968). (See also Gallone 
and Zecca 1973.) 

The mathematical assumptions on the logic are such that the physical 
system to which the logic refers is allowed to have any kind (even 
continuous) of superselection rules. For this reason, some results of the 
paper are an extension of results obtained in Varadarajan's framework, 
where, however, the superselection rules are assumed to be at most discrete 
(Varadarajan, 1968; Pulmannov~, 1976). For a discussion of the algebraic 
representation of the superselection rules see Cirelli, Gallone, and Gubbay 
(1975) and Cirelli and Gallone, 1973). 

Motivated by the statistical interpretation, the states are assumed to 
be a convex subset of the set of the additive measures on the logic. They 
are also assumed to be strongly order determining on the logic and to have 
a further property of "normality" analogous to the property of the normal 
states of a W* algebra (Sakai, 1971). 

In the context of those assumptions, the concepts of characteristic, 
pure, and maximal state are discussed. These concepts, which coincide in 
the standard Hilbert model (Gallone and Zecca 1973) and which have 
been studied also in Berzi and Zecca (1974), are further investigated in 
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some interesting classes of proposition-state structures (the problem re- 
mains open, however, whether they coincide in a general proposition-state 
structure). 

The superposition relation for the states is formulated in a way 
equivalent to the one of Varadarajan. Both a classical and a quantum 
superposition principle are formulated by means of the superposition 
relation restricted to the pure states. The physical systems in which a 
classical or a quantum superposition principle holds are recovered to be 
the classical and the purely quantum systems, respectively. 

The reversible dynamics for the physical system proposed in Gorini 
and Zecca (1975) is reformulated in a compact way and applied to the case 
in which a discrete decomposition of the states in terms of pure states is 
possible. It is shown that the projections and the normal states of a W* 
algebra satisfy the axioms which define a proposition-state structure. 

Almost in every section of the paper the W*-algebra model is used to 
exemplify definitions and results obtained at the level of a general proposi- 
tion-state structure. In particular it is shown that the pure, characteristic, 
and maximal states coincide in this model and that the problem of the 
reversible dynamics can be completely solved by using results of Kadison. 

Also the C*-algebra model indirectly fits our axioms as a consequence 
of the GNS construction, and in that connection some physical situations 
are discussed. 

Finally the scheme is specialized to get the standard irreducible 
Hilbert model. With such a representation it is easily seen that the 
definition of superposition of states we use is a natural extension to the 
statistical operators of Dirac's superposition of pure states. 

We then prove that, in the Hilbert model, the superposition relation of 
the statistical operators is preserved also under the most general (linear 
irreversible) dynamical evolution for the physical system (hence in particu- 
lar by a dynamics on the statistical operators governed by an homoge- 
neous generalized master equation). 

As a last result we show that the superposition relation for the 
statistical operators is preserved also under the coupling of physical 
systems when the context of the Hilbert model is assumed. 

2. THE PROPOSITION-STATE STRUCTURE 

2.1. Mathematical and Physical Assumptions. We start with the defini- 
tion of the scheme that will be used through the paper. The physical 
interpretation will immediately follow. We use Maeda and Maeda's book 
(1970) as the reference for the lattice theory. Notations and some useful 
definitions and results concerning logics are collected in the Appendix. 
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Definition 2.1. A proposition-state structure (pss) is a pair (L, S), 
where L is a logic, namely, a complete orthomodular lattice (whose 
elements will be called propositions) and S is a family of maps (states) 
from L to the interval [0, 1] such that, by setting S l (a ) - -{s~S:  s ( a ) =  1} 
( a ~ L), the following holds: 

AI:  a, b~L~(a<bc=~Sl (a)cS l (b ) )  (S  is strongly order 
determining on L); 

A2: Sl(/k~a~) = 0 ~Sl(a~) V{a~) c L  ("normality" prop- 
erty of the states); 

A3: sES;  a, b E L ,  a d _ b ~ s ( a V b ) = s ( a ) + s ( b ) ;  s(~)= 1 
(the states are additive measures on L with total 
mass 1); 

A4: S is convex, namely, s l, s 2 ES, a ~[0, 1]~cts I +(1 - 
a)s 2 E S; 

A5: dEC(L) ,  s ~ S ,  s (d)4:O~s  a ~S,  s a being defined 
by s a ( x ) = s ( x A d ) / s ( d  ) V x E L  [C(L) denotes the 
center of L which is a distributive sublogic of L]. 

With our assumptions the logic L is a generalized proposition system in the 
sense of Piron (1964). The name "proposition-state structure" has been 
introduced in analogy with the name "event-state structure" introduced by 
Pool (1968). 

We note that the additivity of the states implies, by induction, the 
property 

s V a ,  = s (a , )  (s S) 
i i=1 

for every finite family {a;) of mutually orthogonal elements of L. Indeed 
from a i < (a~ ) (iv~k) there follows a i < (Vk~iak) a- Vi. 

From A4 and by induction we have also that if (si} c S  is a finite 
family then 

~ i s i ~ S  V(c~i) c[O, 1 ] with  ~ oti-- 1 
i l l  i=1 

Moreover, S being convex, the following definition makes sense. 

Definition 2.2. Apure state of apss (L, S)  is an element s ~ S  such that 
S=OLS 1 + ( 1 - a ) s  2 (s l, S 2 ~ S ,  a ~ [ 0 ,  l])=::>s=s 1 = s  2. 

The set of the pure states will be denoted by Sp. 
The physical interpretation of a proposition-state structure is the 

following. To every physical system Y, we associate a pss (L, S). The 
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propositions of L are interpreted to represent classes of equivalent observa- 
tion procedures of E having only two possible outcomes, say "yes" and 
"no"  (tests), for instance an excited or nonexcited counter or a filter which 
lets a certain kind of particles pass (a particle passes or does not pass). 

The states of S are interpreted to represent the preparing procedures 
for Y., namely, instructions for an apparatus to produce samples of E. By 
considering a sample of Z which has been prepared according to an s ~ S, 
and by observing it with an aEL the number s(a) gives the probability of 
the answer yes for a test of a. 

From the axiom A1 we have that a = b if and only if Sl(a  ) = Sl(b ) and 
hence a proposition is completely determined by the states which are 
completely true on it. 

If now (a~) is any family of elements of L, from A1 we have 
SI(A~a ~) c N ~Sl(a,), that is, the answer yes for a test of A~a~ implies the 
answer yes for any test of any a , .  By requiring A2 we assume that the 
converse holds, namely, that the tests of A~a~ are defined by giving 
the answer yes with certainty if and only if every test of every a~ gives 
the answer yes with certainty. Even if A2 seems to be a strong request 
on the theory, the degree of generality, or at least its usefulness, remains 
fortunately quite wide. 

Indeed it will be shown in Remark 2.1 that an example of pss is given 
by the projections and normal states of a W* algebra. From this it follows 
that also the case of the C* algebras indirectly fits our axiom since every 
C* algebra t~ can be canonically embedded in its double dual d~** [which 
is a W* algebra (Sakai, 1971)] with the result that the states of d~ become 
exactly the normal states of d~**. 

From axiom A1 there also follows Sa(V~a,)D u~SI(a , ) ,  and here the 
inclusion is in general strict (see for instance the standard Hilbert model in 
Section 3). Since the proposition V~a ,  is defined by A { x G L :  x ~ a~ Vct), 
it can be interpreted as the least proposition whose tests give the answer 
yes with certainty when at least a test of an a~ gives the answer yes with 
certainty. 

The assumption that this holds for an arbitrary family, namely, the 
assumption that L is complete, is clearly an idealization. If we define 

So(a )=  ( seS:  s (a )  =0} (a~L)  

from the additivity of the states we get Sl(a• for every aEL. 
Hence any test of a • is obtained by interchanging the outcomes of a test 
of a. 

Now let a and b be two orthogonal propositions (a,.;b• We have 
Sl(a) C So(b) so that the answer yes of a test of a implies the answer no for 
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a test of b (and conversely). From the statistical interpretation it should 
then hold s(aVb)=s(a)+s(b) VsES,  which has indeed been assumed by 
A3. This enables us also to interpret the orthomodularity of L. If s ~ S and 
a , b ~ L ,  a<~b, we have s(b)=s(a)+s(a • Ab)  by the additivity of the 
states and by the orthomodularity of L. Hence the physical system behaves 
"classically" as far as the observables a and b are considered. 

The assumption of the convexity of S (A4) is motivated by the fact 
that the statistical mixtures of preparing procedures of Y, define new 
preparing procedures of 51,. 

The role played by the axiom A5, which is essentially a technical 
condition, will be clear in the proof of some results of the paper. 

For  completeness we remark that the propositions q~ and ~ do not 
represent rigorously classes of ye s -no  experiments on Y.. Indeed the 
corresponding "tests" have only one outcome: Sl(~)= S 0 (~ )=S  and So(~ ) 
= S 1 ( 4 ) = e m p t y  set. By forcing the given physical interpretation we as- 
sume that ~ and q~ represent the "tests" of the existence or of the 
nonexistence of Y, respectively. 

We now take into consideration the fact that the physical system Y. 
may be a classical, a purely quantum, or a quantum system. 

A mathematical classification in this sense may be obtained by the 
following arguments. We have seen that the orthomodular condition of L 
implies a classical behavior of two propositions a, b such that a-<< b. It is a 
result in the theory of the orthocomplemented lattices that the orthomodu- 
lar condition is equivalent to the condition: if a<<.b then the lattice 
generated by the family {a, a • b, b • ) is distributive (Maeda and Maeda, 
1970). It is possible, however, that the last family generates a distributive 
lattice even if the condition a < b is not satisfied. In an orthomodular 
lattice this happens if and only if a commutes with b (written aCb), 
namely, if a = ( a A b ) V ( a A b  1). 

If now s is a state and aCb in the logic of apss (L, S) of the physical 
system ~ we have s (a)=s(aAb)+s(aAb • ) since aAb _L aAb • It follows 
that the physical system behaves "classically" with respect to the proposi- 
tions a, b if and only if aCb. 

A classical system can then be characterized by the condition xCy 
Vx, y EL, or equivalently, by the condition C(L)=L.  

If, on the other hand, xCy is not satisfied, for every y in L, by any 
nontrivial x, that is if C ( L ) =  (ep,~) (L  is irreducible), we say that Y is a 
purely quantum system. If C(L) is strictly contained in L and possesses 
nontrivial propositions, we say that E is a quantum system endowed with 
superselection rules. 

By using standard results in the lattice decomposition theory we have 
some more information in the last case. Indeed let {z~: a EI}  be any 
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central decomposition of 9, that is, any family of elements of C(L) such 
that 

(i) z,,/kz B =q~ if av~fl (and hence z,~_Lzl~ ) 
(ii) 

Then L can be decomposed into the direct sum (even continuous): 

of the relatively orthocomplemented logics L[r  z~]= (xEL: e? <x <z,}  
(superselection sectors) which come out to be mutually orthogonal since 
x~L[eo, z~],yEL[eo, zB] imply x<z~ <<.z~- <yX. 

If a superselection sector turns out to be irreducible, then, with respect 
to its propositions, the physical system behaves as a purely quantum 
system. 

It may also happen that a decomposition of L exists such that all the 
superselection sectors are irreducible and hence with respect to each of 
them E behaves as a purely quantum system which is different, a priori, 
from sector to sector. This is the case in which C(L) is an atomic logic, by 
using the atoms A(C(L)) of C(L) to decompose ~: 

L = z ] :  z 

Indeed if z~A(C(L)) then L[q~,z] is irreducible (Varadarajan, 1968, 
Theorem 6.19). 

An interesting subcase is that in which the superselection sectors are 
all orthoisomorphic to a given logic L A of a purely quantum system Y A. If 
C(L) is interpreted as the logic of a classical system X 1, then L could be 
interpreted as the result of a possible coupling of the logics C(L) and L A 
and correspondingly E as the compound system E A + Y l  . The proposed 
interpretation is motivated by the fact that, as has been shown in Zecca 
(1978) and Aertz and Daubechies (1978), there are cases of interest where a 
definition of product of classical and quantum logics makes sense which 
gives rise to a quantum logic with continuous superselection rules. The 
associated superselection sectors come out to be orthoisomorphic images 
of the original purely quantum logic while the center of the product logic 
turns out to be orthoisomorphic to the original classical logic. 

Remark 2.1. There are interesting example of pairs (L,  S) which fit 
our axioms A1-A5. Let M be a W* algebra. It is a standard result that M 
can be faithfully represented by a v o n  Neumarm algebra of bounded 
operators on some Hilbert space H ( H  not necessarily separable) (Sakai, 
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1971). If we denote by M p the projections of M and by N the normal states 
of M restricted to M e, then the pair (M ~, N) is a pss. Indeed M p is a 
complete orthomodular lattice with respect to the order relation p, q ~ M  p 
p <~ qc~q-p >1 0 and to the orthocomplementation p-+p' = 1 - p  (Sakai, 
1971). Moreover we have the formula 

S l ( p )  = (opEN: supptp<p} ( p E M  ~) 

where suppcp is the support of the normal state ~, namely, the least 
projection of M p which takes the value 1 on ~ (Sakai, 1971). By taking into 
account the additivity of the normal states we have then p, q~MPp < q ~  
S~(p)CSl(q), To show the converse, let ~Px be the normal state defined by 
cpx(.) = (x , . x )  with x~pH,  [[x[[ = 1. It holds cpx(p) = 1. If now Sl(p)CSl(q)  
we have also cpx(q)=l, which can be written ( x , (1 -q )x )=O VxEpH.  
Hence (1-q)py=O VyEH,  and then qp=p or p<q.  We have thus 
checked the validity of axiom A1. As to A2 we have identically 

Sl(/k~p~)=(rpEN: suppqv<p~V~)= ~'~ Sl(p~ ) ( ( p ~ } c M ' )  
t~ 

The remaining axioms hold trivially. 
A first limiting case of the previous situation is that in which (L,  S ) =  

(L(H),  K(H)), L ( H )  being the irreducible logic of the closed subspaces of 
a separable complex Hilbert space H and K(H)  the convex set of the 
positive trace class operators on H with trace 1. 

The probabilities are given here by the formula p(a)=TrPap, pE 
K(H),  aEL(H) ,  pa being the orthogonal projection on H with range a. 

Another limiting case is the one in which M is a commutative IV* 
algebra. In this case M p comes out to be a distributive logic and hence it 
can be associated to some classical physical system. 

Remark 2.2. Axiom A2 of Definition 2.1 could seem too restrictive 
when applied to the case of the 14/* algebras. Indeed such an axiom seems 
to rule out of the scheme the states that are not normal. This fact is, 
however, weakened not only because of the previously mentioned relation 
between a C* algebra and its double dual, but also by the fact that, in 
many cases, the choice itself of the normal states is not too limiting on 
physical grounds. 

In this connection let us consider directly the case of the C* algebras 
which are used in physics in statistical mechanics as well as in relativistic 
quantum field theory (Ruelle, 1969; Haag and Kastler, 1964). 

If (~ is a C* algebra and (~r~} is a family of representations of d~ then 
every element of {~r~} can be considered as a subrepresentation of the 
same representation p of ~ defined by p = ~ r~  (Dixmier, 1969). 
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If (%} are the states of C which are of physical interest and %. are the 
corresponding GNS representations (Sakai, 1971) 

%(a) = (~,~, ~r,(a)~), a E C  

then all the states % are normal when extended on 

M=O(~)"  

the von Neumann algebra generated by p(C). By the considerations of the 
previous Remark we can then use as a pss to describe the physical situation 
the projections and the normal states of p(C)". 

As a special case the family (%) could be the set of all the states of A: 
the algebra O(C)" is then isomorphic to the double dual C** of C (Sakai, 
1971). 

Another special situation is that in which the von Neumann algebras 
%(C)" and ~rr generated by the GNS representations corresponding 
to the states ~ and ~p are factors [these kinds of states are used in physics to 
represent pure phases in statistical mechanics (Hugenholtz, 1967)]. Only 
the following two mutually exclusive cases can then happen (Dixrnier, 
1969): 

(a) The set of states of d~ which are normal on %(~)" coincides with 
the states of C which are normal on %(C)"; in this case the two representa- 
tions are quasiequivalent, so that %(C)" is isomorphic to r%(C)". We can 
then choose as a pss the projections and the normal states of %(C)". 

(b) % and ~rr are disjoint representations, so that for every representa- 
tion ~r such that ~ (a )=  (qb, ~r(a)~b) and tp(a)=(9,  ~r(a)q') it holds (Hepp, 
1972) 

(X~+~,~l~r(a)lX~+t~,~,)=lXl%(a)+lt~lZLP(a), aEC. 

We can then choose the representation ~r = %~rr  defined by ~r(a)= %(a) 
+%(a)  (aEd~) in H~ =H~Hr The description in terms of apss can be 
done by using the projections and the normal states of 7r(6~)". 

2.2. States and Ideals. We now discuss some concepts that will be 
very useful in the following. The states of a pss (L, S) can be used to 
introduce ideals in the logic L. For every nonempty subset D of S we 
define the subsets of L: 

L(D)= (aEL: DcS,(a)} 

O(D)=  (a~L: DCSo(a)} 
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The above sets have the following properties: 

(i) aEL(D), bEL, a<b~bEL(O) (by A1) 
(ii) a, bEL(D)~aAbEL(D) (by A2) 

(iii) A L ( D ) @  ~ and AL(D)EL(D) [indeed DC S~(AL(D))= 
n x~L(mSI(x)] 

There follows that L(D) is a dual principle ideal of the logic L (Birkhoff, 
1967). 

This means that there exists an a E L  such that 

L ( D ) = { x ~ L :  x >.>a} 

[such a turns out to be exactly a =  AL(D)] .  
The set O(D) has the dual properties (in the sense of the lattice 

theory) of those of L(D), and hence it is a principal ideal of L which can 
be represented as 

O(D)= (x~L: x <. VO(D) }  

We state now some results for the proof of which we refer to Berzi and 
Zecca (1974). 

Lemma 2.1. Let (L, S) be a pss. Then 

(i) AL(D)= V (AL(s) )  VDcS 
s E D  

N N 

(ii) s =  ~,, c~is;, {tx~} C[0, 1], ~ c~/= 1, 
1 1 

N 

{~,}cS~L(~)= A L(~,) 
i = l  

where L(s) stands for L((s}). 

To complete the section we recall that a (nontrivial) dual principle ideal I 
is said to be maximal if I'D 1, 1' a (nontrivial) dual principle ideal, implies 
I ' =  I. A maximal dual principle ideal has the form 

I=(xEL:  x>e) 

where e is an atom of L. There is then a one-to-one correspondence 
between the atoms of L and the maximal dual principle ideals of L. 
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Remark 2.3. In the case of the projections and normal states ( M  p, N )  
of a W* algebra M we get the formulas 

L ( ~ p ) = ( p E M t ' ; s u p p c p < p ) ,  cpCN 

AL(cp) = supp q~ 

A L ( D ) - -  k/ supp(p, D c N .  
~p~D 

2.3. Characteristic States and Atomieity Condition. The request of the 
atomicity of the logic associated to the physical system is generally 
assumed when one has in mind to specialize the axiomatic scheme to get 
the standard Hilbert model. On the basis of the physical interpretation of 
the pss (L ,  S)  which has been associated in Section 2.1 with the physical 
system, such a condition cannot be required in general. There are indeed 
examples of physical interest where the logic L not only is not  atomic, but  
it does not even contain any atomic proposition. 

Remark 2.4. Let us consider thepss ( M  p, N )  of Remark 2.1. We show 
that if M is a type H or type 111 IV* algebra, then M ~ has no atoms. Indeed 
suppose a to be an atom of M p and consider the linear positive map 
x--->axa from M to the 14I* algebra aMa. If x is a positive element of M, 
x <  Ilxlt ' l  and hence axa<ltxlla. In particular if x = a y a  is a positive 
element of M we have x = a x a <  Ilxlla so that if x is a projection of aMa 
we have x---0 or x = a. It follows that aMa contains no projections except a 
so that aMa is an Abelian algebra (a is an Abelian projection) and hence a 
is a finite projection (Sakai, 1971, Proposition 2.2.8). This is a contradiction 
since a type-II or -III W algebra has no finite projections. 

The situation of the previous Remark is not a purely mathematical 
example. It refers to a precise physical situation. Indeed, in quantum 
statistical mechanics, a way to study a thermal equilibrium state q0 for a 
physical system E is that of considering the von Neumann algebra M 
generated by the C* algebra of the quasilocal observables of Y, on the 
Hilbert space of the GNS representation defined by rp and to consider the 
normal extension of qo to M. If r is the thermal equilibrium state corre- 
sponding to one phase of a free Bose gas, then M is a type-III von 
Neumann algebra (Hugenholtz, 1967). 

Even if the logic L is not in general atomic, it is still possible that L 
contains some atomic propositions. Such atoms of L can be characterized 
in alternative ways by using the concept of lattice ideal introduced in the 
previous section. 
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Definition 2.3. A maximal state of a pss (L, S) is an s E S  such that 
L(s)  is a maximal (dual principle) ideal. The set of the maximal states will 
be denoted by S m. 

If s ~ S  m we have that A L ( s ) E A ( L )  (the atoms of L). Conversely, if 
a C A ( L )  and s ESl(a  ) then A L ( s ) = a .  It follows that the correspondence 
s-->AL(s) between maximal states and atoms of L is onto (even if, a PriOri, 
not one to one). A class of states that are both pure and maximal (as will 
be presently seen) can be characterized in the following way. 

Definition 2.4. A characteristic state of a pss (L, S)  is an s E S  such 
that s 'ES ,  L ( s ' ) = L ( s ) ~ s = s ' .  The set of the characteristic states will be 
denoted by S c. 

Proposition 2.1. Let (L, S) be apss. Then 

sc csm nsp 

Proof. (i) ScCSm: let s ~ S  C, then s ~ S l ( A L ( s ) ) .  If s ' ~ S l ( A L ( s ) ) ,  
s=t=s ', then L(s ' )DL(s ) .  Consider now g = a s ' + ( 1 - a ) s ,  o~E[0,1]. By 
Lemma 2.1 we have L ( g ) =  L(s )  and hence ~=s,  s being characteristic. (ii) 
S~ cSp: suppose sE  S~ and s=as  1 +(1 - a ) s  2. We have L ( s ) =  L(s l )NL(s2) .  
By Lemma 2.1, A L ( s ) = ( A L ( s l ) ) V ( A L ( s 2 )  ). Since, by (i), A L ( s )  is an 
atom, it must be A L ( s ) = A L ( s l ) = A L ( s 2 )  or L ( s ) = L ( s l ) = L ( s 2 )  and 
hence s= s I = s2, s being characteristic. 

A characteristic state is then determined by the set of propositions 
that are true with certainty on it, or, equivalently, by the property 
SI (AL( s ) )=  {s} (which implies, by A1, that A L ( s )  is an atomic proposi- 
tion). 

The results just obtained suggest a sufficient condition for the atomic- 
ity of the logic of the physical system. 

Proposition 2.2. Let (L, S) be a pss such that VaEL ,  a4=ep; then at 
least one of the following conditions holds: (i) a is an atom; (ii) SI(a)N S~ 
is different from the empty set. 

Then L is an atomic logic. Indeed if a is not an atom and av~4~, from 
s E S I ( a ) f q S  c w e  have a ~ L ( s )  and hence A L ( s )  (which is an atom by 
Proposition 2.1) is such that A L ( s ) < a .  

Roughly speaking, the atomicity of L is ensured by the requirement of 
the existence of sufficiently many characteristic states. 

We remark that the atomicity of L could be obtained, instead of the 
assumption of Proposition 2.2, with the condition 

a ~ L ~  S l (a)  7~ S m :/= empty set 
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since also in this case we have that AL(s)  is an a tom such that AL(s)  <<. a 
for every sESI(a)NS,,.  However, the condition given in terms of char- 
acteristic states should be preferred since the maximal states are not, a 
priori, completely determined by the propositions certainly true on them. 

2.4. Characteristic, Pure, and Maximal States. A problem to which 
Proposition 2.1 gives rise is that of establishing whether there are pure or 
maximal states which are not characteristic; whether the maximal states 
are pure or, conversely, if the pure states are maximal states. 

We will not be able to give a complete answer to that question at the 
level of a general proposition-state structure (L,  S). We are able to solve 
the problem in three interesting cases: when the logic L has a continuous 
center; when L is the logic of a classical physical system, and in the 
example of the IV* algebras. 

Proposition 2.3. Let (L,  S)  be a pss such that C(L) is continuous, 
namely, Vc E C(L) ,  3 c I =/= q~, c c i ~ C(L) such that c i < c. Then 

Sc = S m = Sp = empty set of states 

Proof. We first show that Sp is empty. By mimicking the proof of 
Theorem 6.19 of Varadarajan (1968), it is possible to show that, also with 
our assumptions, for every s E S  there exists a dEC(L)  such that 0 < s ( d )  
<1 .  By Axiom A5 we have Sa, Sa~.ES with Sa~Sa~. Then s can be 
decomposed as 

s=s(d)sa + (1 --s(d))Sd~, d being in C(L) 

so that s is not a pure state. We now show that S m is empty by showing 
that A(L) is empty. Suppose a~A(L)  and let e(a) be the central cover 
of a. 

If x < e(a), xv~e(a), x E C(L) then xAa= r I t  follows r  
xAe (a )=x  so that e(a) is an a tom of C(L). But this is not possible since 
L has a continuous center by assumption. The proof is completed since 
S c c Sp O S,, by Proposition 2.1. 

Proposition 2.4. Let (L,  S)  be apss such that C(L)=L.  Then 

(i) Sc=Sp=S m 
(ii) s~Sp~s(x )=l ,O V x ~ L  

Proof. If s ~ S  m, denote A L ( s ) = e  (CA(L)). If x E L  we have x = ( x A  
e )V(xAe  • ), L being distributive. Hence s ( x ) = 0 ,  1 since either x/> e or 
x ~< e • This implies also s E S c. By Proposition 2.1 we have then shown 
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Sc =Sin cSo. Suppose now sESp. If there is an a E L  such that 0 < s ( a ) <  1 
we have sa, sa; E S  (by A5) and s can be decomposed as s=s(a)s  a + ( 1 -  
s (a ) ) s~ ,  which is absurd, s being a pure state. Hence s (x )=0 ,  1 V x E L .  

This implies t h a t / k L ( s )  is an atom. Indeed if e < /kL(s ) ,  e: / : /kL(s)  
then s ( e ) = 0  so that e=q~ or e<<.(/kL(s)) -L and hence e<<,(/kL(s))A 
(AL( s ) )  • =~.  It follows that s ~ S  m and the proof is completed. 

Remark 2.5. Also in the example of the Projections and normal states 
( M  p, N )  of a IV* algebra we have the result 

sc =sp =Sm 

so that there is a bijection between the atoms and the pure states of N. To 
show the result we first show that Sp c S  m. Indeed let (%, H,p, x~} be the 
GNS representation defined by the state tp, and denote by ff the action of 
cp in %(M):  

c~(~r~o(a)) = ( x ~ ,  rr~(a)x~)=cp(a), a ~ M  

If ep is a pure and normal state we have (Sakai, 1971, Propositions 1.21.9 
and 1.21.10) 

~r~(M)" = r B(H~)-----(all the bounded operators in H~) 

and hence supp ~ = [x~ )(x~01 E %(M) .  We distinguish two cases: 

(i) % is a faithful representation: then ~r~l(Ix~0~(x~01) -- 
supp q~ is an atom in MC 
(ii) % is not a faithful representation. Suppose then that 
suppcp is not an atom in M p, namely, that there is a 
q ~ M  p, q<suppcp, q=/:supp~. Then it must be the case 
that either 

(a) rr~(q) = ~r+(supp ~0) = [x~ ) (x~01 

o r  

(b) qr~(q) = 0  since Ix ><x l is an atom in ~r~(M) 

If (a) holds we have that rp(q)=l ,  which implies q~>supp~ and hence 
supp rp is an atom of M p. If (b) holds we have ~p(supp c p - q ) =  qg(supp cp)-- 1, 
which implies supp rp- q >/supp cp, and this is impossible unless q = 0. Both 
in (i) and (ii) we have thus shown that supp rp is an atom when ~ is a 
normal pure state and hence that ~p is a maximal state. 
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By taking into account Proposition 2.1 we have thus shown 

sccs. 

To complete the proof we show that a maximal state is a characteristic 
state. Let indeed tpEN with supp~0=/kL(cp) an atom in M p. If ~k~N is 
such that L(cp)= L(~ )  and hence supp ~k = supp % by the very definition of 
support of a normal state we have 

rp(a) = tp(supp ~. a �9 supp cp) 

if(a)  = ~p(supp q~. a- supp qo) V a C M  

Since supp cp is an atom, supp tp. M. supp cp is an Abelian algebra having no 
projections except supp cp (see Remark 2.4) and hence supp cp.a. supp tp = 
a(a).supp ~p Va ~ M, a(a) being a complex number. 

By using this result in the last two equations we get 

~k(a) = qo(a)=a(a)  V a e M ,  that is ~p=rp 

We want now to study the effect of the possible superselection rules of the 
physical system Y. on the structure of the pure states. 

If (L, S) is apss and z ~ L ,  we denote by Sl(z) the restriction of St(z ) 
to the relatively orthocomplemented logic L[ff, z] (with the relative ortho- 
complementation x---~x'=x "L/Xz). We also denote by ~ the restriction to 
L [ G  z] of the element s E Sl(z ). 

Theorem 2.1. Let ( L , S )  be a pss and let z E C ( L ) .  Then (i) 
(L [G  z], Sl(Z)) is a pss. If Sj,(z) denotes the pure states of Sl(z), 
then (ii) gESp(z) implies g* @Sp, where g* is defined by g*(x)= 
g(x/Xz), x E L .  (iii) For every central decomposition {z~} of 1 (see 
Section 2.1) by setting 

we have 

(a) a =/=fl~S~ N S~ = empty set 

(b) Sp = U s~ 

Proof (i) We have to check that the convex set Sl(z) of additive 
measures on L[q~, z] satisfies axioms A1-A5. This poses no problem 
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except for axiom A5. To show the validity of that axiom we preliminarily 
show that if d is an element of the center of Lift ,  z], then dE C(L). Indeed 
we first have that yCd in LVy <z since, by the assumptions on d, 
y = ( y A d ) V ( y A d ' )  = ( y A d ) V ( y A ( d  • Az))  = ( y A d ) V ( y A d ' ) .  

This implies that ( xAz )Cd  V x ~ L .  Moreover ( x A z  • since d A_ x 
Az • (Maeda and Maeda, 1970, Lemma 36.3). It follows that d commutes 
with ( x A z ) V ( x A z  • ) (Maeda and Maeda, 1970, Lemma 36.4) and hence 
xCd V x E L  since x = ( x A z ) V ( x A z •  z being in C(L). If n o w  S~L~I(Z ) 
and d in the center of L[0,  z] is such that g(d)ea 0, by setting gd(X)=g(xA 
d)/g(d),  x<z ,  we have that Sd ESl(z)  since Sd =Sdl/4,,~I and s d ES  by 
A5, d being in C(L). 

(ii) By taking into account A5 it is easy to show that ~* CS. Suppose 
n o w  

g*=as,+(1-ct)s= a ~ [ O ,  1], SI,$2 ~ S  

We have sl(z)=s2(z) = 1, hence gl, g2ESl(z).  Since g~Sp(Z) we have 
g=gl =52. Then s=s 1 =s  2 since V x ~ L  we have x = ( x A z ) V ( x A z •  
C(L)) and s l (xAz  • =s2(xAz • = O. 

(iiia) Let 5" ES~. Then g*(z~)= 1 while g*(zp)=g*(r  and hence 

(iiib) We have to prove that if s E Sp then there is an a such that s ~ S,,. 
We first show that s(z~)=/=O for some a. Indeed if s(z~)= 0 Va, we have the 
contradiction s E rl ~Sl(z)  ) = S l ( A , z )  ) = Sl((V~z~) • ) = empty set. Sec- 
ondly if 0 <s (z~ )<  1 we could write, by taking into account also A5, 

= + (1  

so that s would be not pure. Hence s(z~)= 1 for some ot so that gESl(z~). 
We now show that gis a pure state in Sl(z,). If g= ~'gl + (1 -7 )52 ,  aC[0,  1], 
then, by setting g*(x)=g(xAz~), g~(x)--~l(XAz,,), g~(x)=g2(xAz,,) we 
have g* = Yg~' + (1 - 7)g~. But g*(x) = s(x) since from x -  ( x A z , ) V ( x A z ~ )  
and s ( x A z ~ ) = O  we have s(x)=s(xAza)=g(xAz~) .  It follows that s--- 
3,s~ +(1-V)s2 ,  which implies s=s I =s2, since s is a pure state, and hence 

g=~l ='~2- 
We remark that the results (ii) and (iii) of Theorem 2.1 are generaliza- 

tions to our scheme of results obtained by Varadarajan (1968), where, 
however, the further assumption of atornicity of the center of the logic has 
been made. That situation corresponds to the special case of Theorem 2.1 
in which C(L) is atomic and the atoms of C(L) have been chosen to have 
the central decomposition of 2. 
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2.5. Superposition and Closure Under Superposition. We now discuss 
the superposition relation for the states of the physical system. The 
language of the lattice theory will be very useful to that end. 

The definition of the superposition relation we use concerns all the 
states and, in the Hilbert model, when it is restricted to the pure states it is 
equivalent to Dirac's superposition of pure states (see Section 3.1). 

Moreover it furnishes a unified formulation of the superposition in the 
sense that it contains the concept of quantum superposition as well as the 
concept of statistical mixture. The definition we use is equivalent, in our 
scheme, to the one originally introduced by Varadarajan (1968) and 
studied by other authors (Gudder, 1970; Pulmannov/t, 1976; Berzi and 
Zecca, 1974; Gorini and Zecca, 1975). 

Definition 2.5. Let (L,  S)  be a pss associated to the physical system. 
We say that a state s is a superposition of the states in D c S  if L ( s )D  L(D). 

The physical interpretation is the following. Suppose that a y e s - n o  
experiment on the system Z gives the answer yes with certainty when Z has 
been prepared with any one of the preparing procedures corresponding to 
the states of D. Then to say that s is a superposition of the states of D 
means that the probability of the outcome yes for the same y e s -n o  
experiment performed on 2 is 1 once Z has been prepared according to s. 
Equivalently, the states being additive measures on the logic, s is a 
superposition of the states of D if s'(a)-O Vs' ED (aEL) implies s(a)----0, 
which is just the definition introduced by Varadarajan. 

Since L(s) and L(D) are dual principle ideals (Section 2.2) we have 
that L(s)DL(D) if and only i f / k L ( s )  </X,L(D). By taking into account 
Lemma 2.1, it follows that s is a superposition of the states of D if and only 
if 

A L ( s )  < V ( A L ( s ' )  
s ' E D  

If as in Lemma 2.1, s=Y~ais i we have L(s)=L((si}) so that the statistical 
mixtures are a limiting case of the superposition relation. 

We now introduce a closure operation in the subsets of S. For  every 

D C S define 

D-- ('~ S,(x) ( x eL )  
SI(,X)~ D 

I 

In Gorini and Zecca (1975) it has been shown that the map D-->D is a 
closure operation on the subsets of S and that 

D= (s~S: L(s)DL(D)} =S,(AL(D)) 
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The last result motivates the name of closure under superposition for the 
map D-->D and has the direct consequence that the subsets of S which are 
closed under superposition are exactly the Sl(a)'s, a EL .  

Remark 2.6. In the case of the pss ( M  p, N )  of the W* algebra model 
we have that the normal state q~ is a superposition of the normal states in 
D C N if and only if 

supp r < V supp ~b 
q~eD 

and that the closure under superposition is given by (see Remark 2.3) 

/~={qoEN:suppqo<  V supptp) 
4,ED 

2.6. The Superposition Principle for the Pure States. In Section 2.4 it 
has been shown that in many interesting situations the concepts of maxi- 
mal, pure, and characteristic state coincide even if we have not been able 
to solve the problem in general. 

Hereafter we restrict our considerations to the class of pss (L,  S)  for 
which the relation S c = Sp = S m holds. There will be then in the pss we will 
consider a bijection between the atoms of L and the pure states of S. 

It is well known that a point where the difference between classical 
and quantum physical theories is more evident is the one concerning the 
superposition of pure states. Roughly speaking, while for a quantum 
physical system it is possible to construct new pure states by using pure 
states, for a classical system the only pure superpositions of pure states are 
the trivial ones (Gudder, 1970; Varadarajan, 1968). 

Definition 2.6. Let (L,  S)  be a pss of the physical system ~. We say 
that a classical superposition principle holds for (L,  S)  if s ~ Sp, D C S r and 
L(s)  D L ( D ) ~ s  ~D.  

The following results show that the classical physical systems are the 
natural context for the validity of a classical superposition principle. 

Proposition 2.5. Let (L,  S)  be a pss such that C ( L ) = L .  Then a 
classical superposition principle holds for (L,  S). 

Proof If L(s )D  L(D) ,  s ~ Sp, D Cap, we have A L ( s )  < Vs, eD(AL(s ' ) )  
with AL( s ) ,  A L ( s ' )  Vs' ~ D  atoms of L. Since C(L)  is a complete lattice 
it is a completely distributive lattice (Crawley and Dilworth, 1973). Hence 

AL(s)=AL(s)A( V AL(s'))-- V [(AL(s)A(AL(s'))] 
s' E D  s'  E D  
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so that A L ( s ) = A L ( s '  ) for some s'@D and hence s=s'  since we are 
considering pss such that S c = Sp = Sin. 

To show the converse result of that of Proposition 2.5 we need a 
preliminary Lemma which characterizes the distributivity of the logic and 
whose proof can be found in Berzi and Zecca (1974). 

Lemma 2.2. Let L be a complete, atomic, or thocomplemented 
lattice. Then L is distributive if and only if 

e ~ A ( L ) ,  B c A ( L ) ,  e< V B ~ e E B  

Proposition 2.6. Let (L,  S)  be a pss such that L is an atomic logic. 
Then L is a distributive logic if a classical superposition principle holds for 
(L,  S). 

Proof. It  suffices to prove that the condition of Lemma 2.2 is satisfied. 
Let indeed eEA(L),  {e~} c A ( L )  and consider (s} = Sl(e ), (s~} = Sl(e~). If 
e < V,e~ it follows that L(s) ~ n ~L(s~) = L((s~)). If a classical superposi- 
tion principle holds we have s = s~ for some a so that e = e~ for some a, the 
maximal states being assumed to be characteristic. 

We now consider the quantum superposition principle of physical 
states. As has been done by Dirac, such a principle could even be assumed 
as the starting point of the quantum theory. 

In the standard formulation of quantum mechanics the pure states are 
represented by rays of the Hilbert space H of the physical system. In  this 
context the quantum superposition principle is expressed by  the fact that 
new pure states can be obtained by  linearly combining representative 
vectors of given rays and by normalizing to 1 the resulting vectors. Since 
there is a bijection between rays of H and atoms (one-dimensional sub- 
spaces) of the logic L(H)  of the closed subspaces of H, it is obvious that 
for every pair % e 2 of atoms of L(H)  there is a third a tom of L(H)  which 
is different from e l, e 2 and which is such that 

I 

e I M e 2  ~ e 1Ve3 --- e 2 V e  3 (2.1) 

(by e I M e 2  w e  mean the linear span in H of the vectors of e I and e2) .  

In the logic approach to quantum mechanics where, a priori, no linear 
spaces are present, Jauch (1968) formulated the validity of a quantum 
superposition principle by just  assuming the previous condition (2.1), 
namely, by assuming that for every pair % e 2 of atoms of the logic of the 
physical system there is a third a tom e 3 of the logic such that the relation 
(2.1) is satisfied. The atomic proposition e 3 which satisfies e 3 < e l V e  2 is 
said to be one of the superpositions of e I and e 2. 
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As far as the author knows, the other formulations of the quantum 
superposition principle are essentially variants or weakened forms of 
Jauch's  one, both when given at the level of the logic a n d  the level of the 
states (Gudder, 1970; Pulmannov&, 1976; Berzi and Zecca, 1974). This is 
true also for the formulation in Chen (1973), which, however, is done in 
terms of propositions not necessarily atomic. 

Definition 2.7. Let (L,  S)  be a pss of the physical system E. We say 
that a quantum superposition principle holds for (L,  S)  if for every 
s 1, s 2 ESp there is an sESp, s4:s 1, s 2 such that L(s )DL(S l )AL(s2 ) .  

We now show that the physical systems for which a quantum super- 
position principle holds are the purely quantum physical systems, if a 
sufficient condition is assumed. 

Proposition 2. 7. If a quantum superposition principle holds for the pss 
(L,  S) with L an atomic logic, then L is an irreducible logic. 

Proof By proceeding as in the first part  of the proof of Proposition 2.4 
one can show that a pure state takes on the elements of the center of L 
only the values 0, 1 even if L is not distributive. 

Let now eEC(L) ,  c4:ep,~, s I ~ S  r such that s l ( e ) =  1 and s 2 ESp such 
that s2(e)=0.  (This is possible since L has been assumed to be atomic.) 
Hence the atoms e 1 = AL(sO,  e 2 = AL(s 2 )  are such that e 1 < e, e 2 < c • If 
now s ~Sp, s ~  sl, s 2 and L(s)  D L(s  0 ~ L ( s 2 )  we have e =  A L ( s )  < el ~/e2 
and e4:e 1, e 2. Two cases are then possible: (i) s ( e ) =  1, that is e <  c. Hence 
e < e A ( e  I V e 2 ) < c / k ( e  I V e •  which is a contradiction. (ii) s ( e ) = 0 ,  
that is e < e • Hence e < c • A ( e l  Ve2)  < e • A ( e  2 Vc)  = e 2, a contradic- 
tion. 

Quantum superpositions of pure states exist even when the physical 
system is not a purely quantum physical system. 

Proposition 2.8. Let (L,  S)  be apss and L a non-Boolean atomic logic. 
Then there is an sESp, a DCSp such that s ~ D ,  and L ( s ) ~ L ( D ) .  

Proof By Lemma  2.2 there is an a tom e of L and a family {e~) of 
atoms of L such that e ~ (e~) and e < V~e,,. If ( s ) =  Sl(e ), (s~)= Sx(%) we 
have that s ~  {s~} and L(s)DL((s~}) .  

To have further information of the effect of the superselection rules at 
the level of the pure states we establish some further properties relative to 
the atoms of the logic. 

Proposition 2.9. Let L be a logic and (z~) be a central decomposition 
of ~ (see Section 2.1). If we define A ( a ) =  ( e ~ A ( L ) :  e<z~} then we have 

(i) e~A(L ) ,  a, bEA(a) ,  e < a V b ~ e ~ A ( a )  
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(ii) U A(oO=A(L ) 
(iii) A ( a ) n A ( f l ) = e m p t y  set if ava/3 
(iv) aEA(a), b ~ A ( t )  (avail), 

e < a V b ~ e = a  or e=b 
eEA(L), 

Proof. (i) Obviously e<<.aVb<z~. (ii) If eEA(L)  then e = e A 2 = e A  
(V~z~)=V~(eAz~) (Maeda and Maeda, 1970, Lemma 29.16) and hence 
an a exists such that e<z~. (iii) If e E A ( a ) o A ( t )  we have e<<.z, A z ,  < 
z~ A z ~  = ~. (iv) We have first e < z~ or e < z/~. Indeed e < aVb <<. z, V z ,  
implies e = eA(z~ Vz/~) --- (eAz~)V(eAZl3) so that either e < z~ or e < z/~. If 
e < z~ then e < z~  < b • since z~ < z~  and b < z/~. It follows, L being 
orthomodular, that 

e <<. b • A ( a V b )  = a V ( b A  bx ) =a 

and hence e = a. Analogously, e < z/~ implies e = b. 

Definition 2.8 (Pulmannovd O. We call a sector of pure states of a pss 
(L,  S) a set A cSs, such that 

(1) r, tEA, sESp, L ( s )DL(r )NL( t )~sEA (A is closed 
under pure superpositions) 

(2) if r, tEA, 3sEA: L(s)DL(r)AL( t )  (a quantum su- 
perposition principle holds in A) 

(3) tEA, rESp, rq~A, sESp, L ( s )DL(r )NL( t )~s=r  or 
s--t. 

If a central decomposition {z~,} of X is given for apss (L, S), by setting 

s(.)= {sES,: AL(s) 

from Proposition 2.9 and the existing bijection between Sp and A(L) we 
have immediately that S(a) satisfies conditions (1) and (3) of Definition 
2.8. Moreover S ( a ) =  S~ (see Theorem 2.1) If now L is an atomic logic (so 
that also L[r  z j  comes out to be atomic for every a) and a quantum 
superposition principle holds in (L[q ,  z~], SI(Z~)), then L[~,  z,,] is irreduci- 
ble (Proposition 2.7), z~ is an atom of C(L), and the sectors of pure states 
of (L,  S)  are exactly the S~'s of Theorem 2.1. 

2.7. Reversible Dynamics. Dealing with a reversible time evolution for 
the physical system Y one can assume the Heisenberg or the Schr6dinger 
point of view. The important fact is that the two dynamical pictures give 
rise to the same physical previsions. 



Superposition of States 215 

The description of the reversible dynamical evolution of 2 can be 
made also in the language used in the logic approach to quantum me- 
chanics. Indeed the Schr6dinger dynamical picture is possible in terms of a 
one-parameter group t---~a t of convex permutations of the states of Mackey 
(1963) and Varadarajan (1968), while the Heisenberg picture is possible by 
means of a one-parameter group t--~#t of orthoautomorphisms of the logic 
of the physical system (Jauch and Piron, 1969; Piron, 1976). 

While, given the Heisenberg picture t ~ t  t, it is possible to define 
directly a Schrrdinger picture t--~a t by setting 

( a , s ) ( a ) = s ( p t ( a ) )  , a E L ,  s E S  

the converse problem does not seem to be obvious nor very much studied. 
In connection with the mentioned problem we will assume the 

Schr6dinger point of view. It will be seen that, also in the dynamical 
evolution, the superposition relation of the states has its role. The time 
translation invariance of the superposition relation will be one of the main 
elements to have physically equivalent Schr6dinger and Heisenberg pic- 
tures. 

Definition 2.9. A dynamical group of a pss ( L, S)  associated to the 
physical system Y. is a one-parameter group t----~at, t E R, of convex auto- 
morphisms of S, namely, a family {at: tE  R} of bijections from S onto S 
such that 

(i) a 0 = ~ (the identity map in S) 
(ii) a _ t = a t  1 

(iii) Ott+,r ~OLtOCr 

(iv) a t ~[iSi = E "[ioLtsi; "[i @ [0, 11, 
1 

N 

7i = 1, s; ES  
1 

which is irr~lemented, that is such that there exists a one-parameter group 
t---~t t of orthoautomorphisms of L such that 

(v) ( a t s ) ( a ) = s ( t ~ ( a ) )  V t E R ,  a E L ,  s E S  

and which is moreover weakly continuous, namely, such that the map 

(vi) t---~( a,s )( a ) 

is continuous Va E L, s E S. 
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As to the physical interpretation we simply notice that condition (iv) 
of Definition 2.9 has been required as a consequence of the statistical 
interpretation of the mixtures of states. 

Given a one-parameter group of permutations of the states (not 
necessarily convex) one could ask what condition must be added to have a 
dynamical group. Even if the group consists of convex permutations of the 
states one could ask when it happens that it is also a dynamical group. To 
have some answers in that direction we collect in the form of a theorem the 
results obtained through many steps in Gorini and Zecca (1975) and then 
make some applications. 

Theorem 2.2. Let (L,  S)  be apss of Z and suppose that S is stable 
under orthoautomorphisms of L, namely, that if ~t is an orthoauto- 
morphism of L, by setting g(a)=s(l~(a))  then 5 E S  for every s ~ S .  
Let t->a t be a one-parameter group of permutations of S such that 
any one of the following conditions (i) and (ii) (which can be 
proved to be equivalent) is satisfied: 

(i) 

(a) L @ ) ~ L ( D ) ~ L ( a , s ) ~ L ( a , D )  

(b) A L ( a t S l ( a ) )  = (AL(o~tS , (a  • )))•  

V t E R  ( s ~ S ,  D E S )  

V t E R ,  a ~ L  

(ii) V a E L  ::IbEL such that a t S l ( a ) = S l ( b )  and a t S l ( a •  
Sl(b • ). 

Then there is a one-parameter group t--->Ot of convex permutations 
of S which is implemented (that is, conditions (i)-(v) of Definition 
2.9 are fulfilled and hence t--->p t is a dynamical group if it is also 
weakly continuous), and it is such that 

(iii) atS , (a)  =ptS , (a )  V t E  •, a E L  

Such a one-parameter group t--->p t is defined by 

(iv) ( p t s ) ( a ) = s ( / X L ( a _ t S l ( a ) ) )  V s E S ,  a E L  

Remark 2. 7. The one-parameter group t---~a t of Theorem 2.1 is not 
necessarily assumed to be made up of convex automorphisms of states, as 
is shown by the nonlinear example of Zecca (1976). 

From the results (iii) of the last theorem we have that a,s =p,s Vs ~ S e, 
VtE R since the pure states satisfy the relation S l ( A L ( s ) ) =  (s). 
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Proposition 2.10. Let (L, S) be a pss such that S is stable under 
orthoautomorphisms of L and moreover with the property 

oo oo 

(i) seS~s= EVisi, %.e[O, 1], ~ i = l ,  {Si) CS p 
1 1 

(o decomposability of the states of S in terms of the extreme states). Then 
any weakly continuous one-parameter group t -~a t of o-convex permuta- 
tions of S satisfying condition (i) [or (ii)] or Theorem 2.2 is a dynamica l  
group. 

Proof. We have immediately, by taking into account the results of 
Theorem 2.2 and assumption (i), 

o o  

OltS=OitE ~iSi = E "~iOLtSi = yiPtSi ----pt S ~ s E S ,  I E  R 
1 1 1 

the si's being pure states. 
We note that assumption (i) of Theorem 2.10 implies that if s E Sl (a  ) 

then S l ( a ) N S c D ( s i } .  Hence L has been implicitly assumed to be an 
atomic logic as a consequence of Proposition 2.2. 

Remark  2.8. We now study Definition 2.9 in the case of the pss 
(M ~, N)  of the projections M p and the normal state N of the/4I* algebra 
M. Let t----~ot t be a dynamical group in the sense of Kadison (1965), that is, 
a one-parameter group of convex automorphisms of N with the property 
that the map t--~(atp)(A ) is continuous V A E M ,  p E N  [obviously, t---~a t 
obeys the conditions (i)-(iv) and (vi) of our Definition 2.9]. By applying 
the result of Kadison (1965), Theorem 3.3, there exists then a weakly 
continuous one-parameter group t--~/t t of Jordan automorphisms of M 
such that 

p ( t L i ( A ) ) = ( a t p ) ( A )  V A ~ M ,  p E N ,  t E R  

Since, as is easily checked, the restriction of a Jordan automorphism to the 
projections M p is an orthoautomorphism of the logic M p, there follows 
that t->a t is implemented (in the sense of Definition 2.9) so that it is a 
dynamical group also in our sense. 

In the special case in which M = B ( H ) ,  the bounded linear operators 
on some Hilbert space H, and N = K ( H ) ,  the statistical operators on H 
(positive trace class operators with trace 1), we have directly (Mackey, 
1963) 

u, pu, + vp t e R  
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t---~U t being a strongly continuous one-parameter group of unitary opera- 
tors on H. The generator of t---~U t, which exists by Stone's theorem (Reed 
and Simon, 1972), can then be interpreted as the Hamiltonian of the 
system. 

3. THE IRREDUCIBLE STANDARD HILBERT MODEL 

3.1. Superpesition of Statistical Operators. The proposition-state 
structure can be specialized to the usual Hilbert model as a consequence of 
an important result that we immediately state and for the proof of which 
we refer to the book of Maeda and Maeda (1970). 

Theorem 3.1. Let L be a complete, orthocomplemented, irreduc- 
ible atomistic lattice with the covering property and of length ) 4. 
Then there is a division ring K, an involutorial antiautomorphism 
X-->X* of K, a vector space E over K, and a Hermitian form f such 
that L is orthoisomorphic to the lattice LE(E ) of the E-closed 
subspace of E. (By setting M ~  (xEE: f(x, y ) = 0  V y E M ) ,  the 
subspace M of E is said to be E-closed if M = M  ~176 holds). 

In the theorem the choice of the division ring K remains open. To get 
the ordinary quantum mechanics we assume 

K =  C (complex numbers) and ~* = X (complex conjugation) 

We are now in a position to formulate Piron's result. 

Theorem 3.2. Suppose that L satisfies, besides the assumption of 
Theorem 3.1, also the previous complex field assumption. Then a 
necessary and sufficient condition in order that L be isomorphic to 
the lattice L(H) of the closed subspaces of a separable complex 
Hilbert space H is that L be orthomodular and that every family 
of mutually orthogonal atoms of L be at most countable. 

The order relation and the lattice operations in L(H), which will be 
denoted again with the symbols ~<,/k, V,  d_, have the following meaning. 
If a, bEL(H), a<~b stands for set inclusion; aAb stands for the set 
theoretical meet; aVb stands for the closed linear span generated by a U b 
in H; and a • stands for the Hilbertian orthogonal complement of a in H. 

Let now (L, S) be apss for the physical system Y.. We assume through 
this section that, besides A1-A5,  also the following conditions are fulfilled: 

A6: The logic L satisfies the conditions of Theorem 3.2 
under which it comes out to be orthoisomorphic to 
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A7: 

a Hilbertian logic L(H) (we denote by ~r the ortho- 
isomorphism under consideration). 
The set of the states coincides with the set of all the 
generalized probability measures on L, namely, with 
the set of all maps s: L--~[O, 1] such that 

s( Vai)= ~ s(ai) 
i ~ l  

for every countable family (al} of mutually orthog- 
onal elements of L. 

By setting m,(x)=s(~r-l(x)), xEL(H)  (s~S) we have that (m,: 
s ES} = S ( H ) ,  S(H) being the set of all generalized probability measures 
on the logic L(H). By the Gleason theorem which establishes the existence 
of a convex isomorphism between S(H) and the set of all the density 
operators K(H) of H (positive trace class operators on H with trace 1) we 
have then that for every mES(H) there is a o~K(H) such that 

m(x)=mo(x)=TrpXo, xEL(H)  

where px is the orthogonal projection on H with range x. By using the 
spectral decomposition of a density operator 

p = ~ 7i Pa' 
i 

where the a;'s are the eigenspaces of p in the range of the latter, one gets 

S,(a)  = (m 0 ~ S ( H ) :  pap=#} [aEL(H)] 

Therefore (L(H), S(H)) is indeed a pss (Gorini and Zecca, 1975) and the 
physical system can be equivalently described in terms of it instead of in 
terms of the original pss ( L, S). 

We have the following formulas (Gorini and Zecca, 1975): 

AL (m o ) = V ai = [ p ] (the range in H of the operator p) 
i 

A L ( D ) =  V [O], DcS(H)  
m o ~ D  

(The connection with the case of the W* algebras of Remark 2. I is given 
by the fact that the support of the trace state O is the orthogonal projection 
in H whose range is exactly [p].) 
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By taking into account the spectral decomposition of a density opera- 
tor we have, moreover, that a state rnp ~S(H) ispure if and only if there is 
a vector ~ H ,  tl ~ II- 1 such that 

mo(x)=m~(x)=TrPxer x~L(H)  

where P~ is the orthogonal projection on the one-dimensional subspace of 
H generated by ~. 

There is then a bijection between the pure states of S(H) and the rays 
of H. 

It is now possible to give a transparent interpretation of the superposi- 
tion relation for the density operators of the physical system. Indeed if 
m p E S(H),  D C S(H)  we have, by taking into account the previous consid- 
erations, that L(rno)D L(D) if and only if 

[P ]C V [0]  (3.1) 
m,, ~ D  

This means that mp is a superposition of the states of D c S ( H )  if and only 
if each unit vector ~; of the spectral decomposition of p = E'y;P~' in terms 
of one-dimensional projections (obtained by repeating the eigenvalues 7; if 
necessary) is a linear combination of unit vectors obtained by analogously 
decomposing the density operators o such that mo ED. In this sense our 
superposition relation is an extension to the statistical operators of Dirac's 
superposition of pure states. In particular if mp =m~ is a pure state and 
D=(m~,, rn~2 } consists of pure states too, from relation (3.1) we have 
I ~ = e l ~  1 -~-e2~ 2 since [~I]V[q~2] is the linear span in H of qq and t~2. 

By contracting our language, we will refer to the relation (3.1) as the 
superposition relation for the statistical operators of the system. 

3.2. Superposition and Irreversible Dynamics. The object of this sec- 
tion is that of showing that the superposition relation of the statistical 
operators is compatible with the most general (linear) dynamical evolution 
of the physical system. 

Definition 3.1. A dynamical map B for the physical system Y with 
hilbert space H is a map of the statistical operators (density operators) 
K(H) into themselves which is affine, namely, such that 

B(ap+(1-a)o)=aBp+(1-a)Bo Vp, oEK(H), O<a< 1 

(B is not assumed to be onto nor one to one.) To show the main result of 
the section we need the following proposition. 
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Proposition 3.1. Let F be a positive linear operator on H such that 
F~< ~ (identity map in H )  and D cK(H)  any family of density operators. 
Then the following conditions are equivalent: 

(i) Ftp--+ Vg,~ V [o1 
o E D  

(ii) Tr Fo = 1 Vo E D 

Proof. (i)~(ii). By writing the spectral decomposition of a density 
operator o in terms of one-dimensional projections 

o = ~ ~ i P %  II ~e II = 1 v i  
i 

we have ~piG[o] Vi. Hence, by assumption (i), TrFo=Y.iaiTrFP q~'= 
Y.ia~TrP q'' = 1 Vo@D. 

(ii)~(i). If o=XiaiP q" we have T r F o =  1 if and only if T r F P  ~, = 1 Vi, 
that is if and only if (~p~, F~Pi)= 1 Vi. By setting Ftp i =tp; +r we have then 
0Pi, ~P~)+ (tPi, ~ i )= 1 so that (~Pi, % ) =  0 Vi. But I1FtPi H = 1 Vi since 

1 = I(@i, F~Pe)I < II F~ill < II~ill = 1 Vi 

by the Schwartz inequality and the assumptions on F. Hence (tpi, t/,i)+ 
(r r 1 so that r = 0  Vi. The above reasoning holds for every a in D. 
Hence FqJ=~ V~p~[o], oED. 

If now f fEVoeD[o]  then q~=l im.x,  with (x.}CEo[o], where E 
denotes the algebraic sum. There follows Ftp--Fl im x.  = lim x.  --~. 

Proposition 3.2. Any dynamical map B of the physical system pre- 
serves the superposition relation of the statistical operators, namely, 

L(p)DL(D)~L(Bp)DL(BD)  (p E K ( H ) ,  DcK(H) )  

[We have written L(p) instead of L(mp) to avoid heavy notation.] 

Proof. The linear extension /~ of the dynamical map B to the trace 
class operators T(H) on H is a positive preserving trace linear map of 
T(H) into itself. The dual m a p B *  of B is the positive map of the bounded 
operators B(H) of H into themselves defined by (Schatten, 1960) 

Tr(/~*a)p-- Tr a ( / ip )  VpE T ( H ) ,  aEB(H)  

By choosing a- -1  in the last equation and by taking into account that /~  
preserves the trace, we have 

~ , ~ = ~  
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Hence 0 < B ' P <  2 for every projection P of H. Let now x E L ( B D ) .  Then 

Tre~(/~o) = 1 =Tr(/~*P~)o V o i D  

which is equivalent, by Proposition 3.1 and by the previous considerations, 
to 

v [o] 
a E D  

If p E K ( H )  is a superposition of the density operators of D, by taking into 
account (3.1) we have 

vce[p] 

and hence, again by Proposition 3.1, T r ( B * p x ) o =  1 =Tr(/~o)P x, that is 
xeL(B). 

The result of the last proposition enables us to assert that the super- 
position relation of the statistical operators of the physical system is 
preserved under the most general (linear)dynamical evolution which the 
physical system undergoes. 

Indeed a dynamical evolution for the physical system for which a 
statistical interpretation is allowed is described in general in terms of a 
one-parameter family t--~B t of dynamical maps, with the following inter- 
pretation. If P is the state of the system at time t = 0, then Btp represents 
the state of the system at time t. 

A standard and quite general example of one-parameter family t--~B t 
of dynamical maps is that given by the motion of the physical system 
governed by a homogeneous generalized master equation, which gives a 
formally exact description of the time evolution of a quantum open system 
coupled to its surroundings (Haake, 1973; Lanz, Rugiato, and Ramella, 
1971; Lugiato, 1976). 

We remark that, since B t has not been assumed to be, in general, a 
bijection, the superposition of the statistical operators is preserved also 
under an irreversible dynamical evolution. For instance, t--->B t (t > 0) could 
be the one-parameter semigroup of dynamical maps obtained from the 
solution of a Markovian master equation. These equations are widely used 
in the phenomenological treatment of open systems and are also a useful 
tool to approximate, in the weak-coupling limit (Davies, 1974) or in the 
singular reservoir limit (Hepp and Lieb, 1973) the generalized master 
equations (see also Frigerio, Gorini, Kossakowski, Sudarshan, and Verri, 
1978, and references therein). 
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A limiting case of the above examples, as well as of Definition 3.1, is 
that in which B t is a convex automorphism of K(H) for every t E R ,  and 
the family t---~B t is a one-parameter group. If the weak continuity is also 
assumed, then one recovers the unitary time evolution obtained at the end 
of Remark 2.8. 

3.3. Superposition and Tensor Product. We will suppose in this sec- 
tion that the physical system E is coupled to the physical system E and 
that the proposition-state structures associated with both systems satisfy 
our axioms A1-A7.  Hence E and E can be described in terms of the 
propositionLstate structures (L(H), K(H)) and ( L ( / q ) , K ( / t ) ) ,  respec- 
tively (H,  H separable complex hilbert spaces). Then the question arises, 
what kind of pss can be associated to the compound physical system 
E + E? According to the standard formulation of quantum mechanics one 
associates to E + E the Hilbert space H |  ( |  is the usual tensor product), 
so that, according to our point of view, E + E can be described in terms of 
the pss (L(H| K(H| with the following physical interpretation. 
A product proposition a |  of L(H| is a y e s - n o  experiment on Z + ~  
which consists in testing E with a and ~ with ~ and then taking the answer 
yes when both experiments give the answer yes, and no otherwise. The 
other elements of L(H| represent the y e s - n o  experiments on E + ~  
which cannot be reduced to the product  of a test on E with a test on "~. We 
remark that also when E and "~ are classical physical systems there exist 
tests of the compound system E + E which are not product tests. This is a 
consequence of the interpretation of the subsets of the phase space of a 
classical system in terms of y e s - n o  experiments (see the Introduction) and 
the fact that a subset of the phase space of E + E is not in general the 
(Cartesian) product of a subset of the phase space of E with a subset of the 
phase space of E. Instead a difference is that, while in the quantum case 
there are atomic propositions of E + Y which are not the (tensor) product 
of atomic propositions of E and E, in the classical (atomic standard) case 
every atomic proposition of E + E is the (Cartesian) product of an atomic 
propositions of E with an atomic proposition of E. 

Analogous considerations can be given for the states K(H| of 
Z + ~ .  A product state 0 |  is interpreted as a preparing procedure for 
E + E consisting in preparing E according to p and E according to 15. Also 
here there are states of E + E which are not product  states, and this holds 
in particular for the pure states. 

According to the interpretation given one expects that the probability 
factorizes when a product test is performed on E + E which has been 
prepared with the instructions of a product state. This is indeed so, since 
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from the properties of the tensor product there follows 

Trpa|174 p|174 a|174 

We want now to mention some other properties of the scheme which are 
connected to the superposition of the statistical operators. To this end we 
need a simple result. 

Lemma 3.1. Let p be a statistical operator of Y. and t5 be a 
statistical oPerator of ~. Then the ranges of the two operators are 
in the relation 

Proof. Let P (if) be the orthogonal projection on H (H)  whose range 
is [p] ([tS]). If (P~,}, ({P~,}) are the one-dimensional projections of the 
spectral decomposition of p (15) in the range of the latter, then P= ~iP~,,, 
P= ~kP~,. It follows that 

i , k  

But the last term is exactly the orthogonal projection whose range is 
D| 

Suppose now p E K(H)  is a superposition of the statistical operators of 
D CK(H)and that 15 EK(H) is a superposition of the statistical operators 
of D c K ( H ) .  By taking into account the relation (3.1), this is equivalent to 
the assumptions 

[ P ] <  V [o] and [ ~ ] <  V [8] 
oED a E D  

By the properties of the tensor product and by using Lemma 3.1 we have 
then 

a E D  

~ez5 

which, again by formula (3.1), means that the state p@25 is a superposition 
of the states of D|  {o|162 oED, ~E19~)cK(H| 

We have thus checked that the superposition is preserved under tensor 
product. 

Finally we want to mention a property of the closure under superposi- 
tion. From the results of Section 3.1 we have first 

S l (a )=  (pEK(H): [p] <a},  aEL(H) 
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If now aEL(H), 5EL(/-I), by using Lemmas 2.1 and 3.1 there follows 

AL(SI(a)@SI(a))= V (AL(p| 
[p]<a 
[f3] <,~ 

= V [ o | 1 7 4  
[p]<a 
[a]<a 

and hence 

s,(~| s,(~)| 

as a consequence of the properties of closure under superposition (see 
Section 2.5). 

By setting a = 2, 5 = ~ in the last result we have 

K(H |  K( H)| I-7I) 

We have mentioned above that the coupling of the physical systems 
produces also states that are not product states. The last equation estab- 
lishes that such states are exactly all the (quantum) superpositions of the 
product states. 

4. S O M E  O P E N  P R O B L E M S  

In the previous sections we have proposed a possible axiomatic 
description of the physical system in terms of logic and states and have 
studied only those aspects of the theory which are, in our opinion, more 
related to the superposition of the states. However, to have a complete and 
satisfactory theory, one has to go on with the program of reproducing and 
generalizing to the level of a general proposition-state structure the main 
aspects of the conventional quantum mechanics. 

In doing that, however, many problems arise which are still unsolved 
and which are "not only of interest in their own right, but the solution of 
which could very likely shed additional light on the basic structure of 
quantum logics" (Gudder, 1978). For instance, while the characterization 
of the compatibility of the observables in quantum logics has been solved 
in Varadarajan (1965) and Gudder (1965), there is open the problem of 
characterizing those quantum logics for which the observables are de- 
termined by their expectations or for which the sum of two arbitrary 
bounded observables exists. Also the concept of transition probability and 
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the Heisenberg uncertainty principle have not had a complete definition 
and generalization for quantum logics. (For more details on the status of 
these problems as well as for information on some other unsolved prob- 
lems, we refer to Gudder, 1978, and references therein.) 

We want here to mention only one other problem which seems to be 
unavoidable if a theory of quantum measurement is addressed and devel- 
oped for quantum logics. Suppose we have the proposition-state structures 
(L, S), (/~, S) corresponding to the physical systems Y,, Y., respectively (for 
instance E could be the physical system under study and ~ a measuring 
apparatus). If one wants to study the compound physical system E +`2 in 
the context of the quantum logics, one has to associate to Y~+Y. a 
proposition-state structure, say (L| S|  which should be a (to be 
defined) well-determined "tensor product" of both (L, S) and (L, S) 
satisfying the appropriate requirements of existence and uniqueness. 

Unfortunately, not only has that problem not been solved, but also 
the related problem of proving the existence of a reasonable "tensor 
product" of quantum logics has not had a solution, as far as the author 
knows. 

There are only some indications in that direction. Indeed if E and 
are classical physical systems with phase space A and .~, respectively and 
associated logics L=P(A) ,  /~=P(A), the power set of their phase space, 
then a logic for the compound system Y, + Y. can be provided by the power 
set of the Cartesian product of A and .,~, namely, by L| • 

If, on the other hand, both ~ and `2 are purely quantum physical 
systems with Hilbertian logic L = L ( H )  and L =  L(H) ,  respectively, then a 
logic for ~ + E can be provided by the tensor product logic, namely, by 
choosing L|174 As shown in Zecca (1978) and Aerts and 
Daubechies (1978) it is possible to define an intrinsic notion of product for 
a special class of logics which, besides the Cartesian product and the tensor 
product, contains also, as a special case, the mixed situation, namely, the 
one obtained by choosing L=L(H) and/~=~(A) .  The result in this last 
case is that the compound system E + ~ can be interpreted as a quantum 
system with continuous superselection rules, an assumption that has been 
made also in Piron (1976). 

Once not only the problem of the coupling of the logics has been 
solved, but also the related problem of the states has had its solution, there 
would be, in principle, the possibility of studying the dynamical evolution 
of the physical system due to the measurement interaction. 

Indeed, one could try to define the dynamical evolution of the 
physical system Y. in interaction with the apparatus `2 by restricting to Y~ 
(in a way to be found) a reversible dynamics (which has been provided in 
Section 2.7) of the compound isolated physical system Y, + "2. 
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APPENDIX: DEFINITIONS AND PROPERTIES OF LOGICS 

We recall that a complete lattice L is a partially ordered set (with 
partial order relation < )  such that for every family A of elements of L 
there exists in L the least upper bound (denoted VA and called the join of 
the elements of A) and the greatest lower bound (denoted A A and called 
the meet of the elements of A) with respect to the order relation < .  We 
denote V L = ~  (one) and A L = q ,  (zero). An atom of L is an element e E L  
such that x E L, x < e, implies x = 0 or x = e. We denote by A(L)  the set of 
the atoms of L. 

The lattice L is said to be atomic if for every a E L  there is an e EA(L)  
such that e <  a; L is said to be atomistie if every a of L, a~q~, is the join of 
atoms contained in it. 

In the complete lattice L we say that b covers a when and a < x < b 
imply x=a  or x=b.  L is said to have the covering property if p E A ( L ) ,  
a E L ,  and p A a  = ~ then aMp covers a. An element of the complete lattice 
L is called afinite element when it is either ~ or the join of a finite number  
of atoms. 

If L has the covering property and a is a finite element of L, then 
there exists a finite family (p~ . . . . .  p,} of atoms such that a=V~.pz and 

/--I A (Vk=lPk)  pi=q~, i = l , . . . , n :  the number  n is called the dimension of a. 
The dimension of ~ is called the length of L. 

An orthocomplementat ion for the lattice L with 4~ and ~ is a bijection 
_1_ from L onto L such that 

(i) xAx•  x V x •  V x ~ L  
(ii) ( x • 1 7 7  V x ~ L  

(iii) x<.ycvy • <.x • x, y E L  

The element x EL is said to be orthogonal to y E L  (written x _k y )  if 
x < y • (equivalently y < x ~ ). 

An orthomodular lattice is an orthocomplemented lattice with the 
property 

(iv) x, y E L ,  x < y ~ y = x V ( x •  A y )  
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We call logic a complete orthomodular  lattice. We say that x commutes 
wi thy  (xCy) in the logic L if 

(v) x = ( x / k y ) V ( x / k y  • 

xCy holds if and only if yCx (Maeda and Maeda, 1970, Lemma 36.3). The 
center C(L) of the logic L is the set 

(vi) C(L)={z@L: zCy V y E L )  

The center is a distributive sublogic of L, namely, besides the properties of 
a logic it has also the property 

(vii) x / k ( y V z ) = ( x / k  y ) V ( x / k z )  Vx, y, z E C (  L) 

and the dual relation of (vii) obtained by interchanging /k with V 
(Holland, 1963). 

The atoms of the center will be denoted by A(C(L)). If x E L ,  L a logic, 
the central cover of x (e(x)) is the least element of C(L) which contains x. 

For every element a of the logic L, the set 

(viii) L[ep, a]={xEL:  g , < x < a )  

is a logic when endowed with the relative orthocomplementation x-->x'= 
x • A a  (Maeda and Maeda, 1970, Lemma  29.15). 

If L, M are logics, a bijection/z from L onto M with the properties 

I a<<.bcz~(a)<~(b), a, b E L  
(ix) 

~ ( a •  • V a E L  

(by < ,  _1_ we have denoted the partial ordering and the orthocomplemen- 
tation both in L and in M )  is said to be an orthoisomorphism of L onto M 
(orthoautomorphism if L~--M). An orthoisomorphism preserves also the 
join and the meet (Jauch, 1968, Lemma 9.4.1) and hence the whole 
structure of a logic. 
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